
A Quantum Leap in Computing


Travis S. Humble, Director, Quantum Computing Institute, Oak Ridge National Laboratory
Exponential growth in computing has revolutionized technical and economic advances across a broad variety of economic sectors: defense, finance, transportation, and many more. But physical limits on this growth, the dreaded end of Moore’s Law, raise questions about how computing will grow in the future. The uncertainty is amplified by the growth in demand arising from large-scale analytics and the increasing size of data centers as well as the costs of securing and storing data in transit and at rest. Meeting these demands will require solutions that are more time and energy efficient, and it is unclear how today’s approaches to computing will meet such requirements. An alternative to address this growing concern is now making headlines, and we give a perspective on why the research behind quantum computing is an exciting possibility for emerging challenges of large-scale computing.
Enter the Quantum Computer
Quantum computing is a new approach to computation that relies on quantum physics to perform calculations. The idea was spurred from insights into how information is stored in atoms, electrons, and photons, which uses features such as superposition, entanglement, and interference. For example, a qubit serves as a quantum analog of a bit that can exist in a superposition of the 0’s and 1’s comprising information. In practice, this creates a probability for either outcome to be observed and the power of quantum computing lies in manipulating those probabilities.
Megan N. Lilly, Quantum Computing Institute, Oak Ridge National Laboratory

The promises offered by quantum computing are two fold. First, quantum algorithms are proven to have theoretical speed ups over best-in-class counterparts for conventional computing. This implies a corresponding payoff in time-to-solution that could be a big win for scalable applications, e.g., database mining and machine learning. The second payoff is the lower energy consumption expected from using both fewer operations and lower energy technologies. The individual atoms and electrons that comprise a quantum computer require considerably less energy to perform calculations and there is a potential energy dividend of several orders of magnitude.

The Future is Quantum
The effort to develop quantum computing, scale up the hardware, and demonstrate a quantum advantage is accelerating. Software and applications for quantum computing are advancing quickly, spearheaded by open-source initiatives and growing user communities. Performance benchmarks for quantum computers are beginning to emerge that enable comparisons across generations of devices as well as with conventional approaches. Driven by the need for more timely and efficient solutions, we anticipate the long development period for the technology will push our computational capabilities to new heights.